Ампервольтметр для лабораторного блока питания
- Подробности
- Категория: схемы на ATtiny
- Опубликовано: 02.04.2017 14:35
- Просмотров: 5314
В. РЫБАКОВ, г. Москва
Этот прибор предназначен для совместной работы с блоком питания, описание которого опубликовано в [1], однако может быть подключён и к другому подобному блоку. Он не только показывает выходное напряжение и ток нагрузки блока, но и выполняет несколько дополнительных функций, делающих лабораторный блок питания более надёжным и облегчающих практическую работу с ним.
Основная функция предлагаемого ампервольтметра (далее АВМ) -измерение выходного напряжения и тока нагрузки блока питания — дополнена возможностью индикации установленного порога срабатывания токовой защиты блока, собранного по описанию в [1]. Это избавляет от необходимости в процессе установки этого порога нагружать блок заданным максимальным током, после чего аккуратно "ловить" нужное положение ручки управления. Имеющийся в АВМ микроконтроллер легко вычисляет текущее значение порога по измеренному им напряжению на движке переменного резистора R5 (см. рис. 1 в [1]) и сопротивлению резистора-датчика тока R13 (там же). Вычисленное значение выводится на ЖКИ.
По результатам измерения напряжения на входе и выходе блока и тока нагрузки вычисляются и отображаются значения мощности нагрузки и мощности, рассеиваемой регулирующим транзистором блока. Кроме того, контролируется температура теплоотвода этого транзистора. По результатам её измерения автоматически включается и выключается вентилятор, обдувающий теплоотвод. А в случае значительного перегрева блок питания отключается от сети.
Дополнительная функция АВМ — ограничение выброса тока зарядки сглаживающих конденсаторов питающего блок выпрямителя, который возникает при его включении в сеть. Кроме того, в АВМ предусмотрен режим самокалибровки.
Размеры прибора лишь немного превышают габариты применённого в нём ЖКИ. В зависимости от выбранного режима отображения на его экран выводятся выходное напряжение, В и ток нагрузки, А (рис. 1);
мощность нагрузки, Вт (рис. 2);
порог срабатывания токовой защиты, А (рис. 3);
температура теплоотвода регулирующего транзистора, °С, рассеиваемая им мощность, Вт (рис. 4).
Если в процессе работы какой-либо из параметров, не выведенных в данный момент на экран, изменился, его значение появляется на нём, а спустя некоторое время прежний режим отображения восстанавливается.
Схема АВМ показана на рис. 5.
Его основные узлы — входные делители напряжения и помехоподавляющие фильтры, микроконтроллер DD1, содержащий АЦП и производящий все необходимые вычисления, а также десятиразрядный ЖКИ HG1.
Управляют АВМ с помощью двух кнопок. Кнопкой SB1 переключают режимы отображения по кольцу в представленной на рис. 1—4 последовательности. Кнопка SB2 предназначена для включения и выключения блока питания, с которым работает АВМ.
Так как АЦП, встроенный в микроконтроллер, способен измерять лишь напряжение, не превышающее напряжение его питания, на двух входах АЦП установлены делители напряжения. Первый, состоящий из резисторов R1 и R3, уменьшает в десять раз выходное напряжение блока питания. Второй делитель состоит из резисторов R2 и R10 и имеет коэффициент деления 20, Он уменьшает до приемлемого для АЦП значения напряжение, поступающее на блок питания от выпрямителя. Измерение этого напряжения необходимо для вычисления рассеиваемой на регулирующем транзисторе мощности.
В цепях измерения тока нагрузки и порога срабатывания токовой защиты делители не нужны, так как напряжение на датчике тока R13 [1] и движке переменного резистора R5 [1 ] не превышает допустимого для АЦП значения.
На все используемые входы АЦП микроконтроллера измеряемые напряжения подаются через ФНЧ с частотой среза около 7 Гц. Это R4C1 в канале измерения выходного напряжения (Uвых), R5C2 в канале измерения тока нагрузки (Iн), R6C3 в канале измерения порога срабатывания токовой защиты (Imax), R7C4 в канале измерения температуры и R9C5 в канале измерения выпрямленного напряжения Uвыпр. Они нужны для снижения погрешности, связанной с пульсацией измеряемого напряжения.
Обработанные программой результаты работы АЦП выводятся на индикатор HG1, который подключён к микроконтроллеру по интерфейсу I2C. Поскольку, согласно спецификации I2C, выходы интерфейсных сигналов должны быть выполнены по схеме с открытым коллектором (стоком), программа конфигурирует линии РВ0 и РВ2 микроконтроллера соответствующим образом. Нагрузочными для них служат два резистора сборки DR1.
Ещё два резистора той же сборки поддерживают высокий уровень на входах РВ1 и РВЗ, когда подключённые к ним кнопки SB1 и SB2 не нажаты. Нажатие на любую из них устанавливает
на соответствующем входе низкий уровень. Высокий уровень на входе установки микроконтроллера в исходное состояние поддерживает резистор R10.
Выводы микроконтроллера, используемые для загрузки программы в его память, выведены на разъём ХЗ, который при необходимости соединяют с программатором. Транзистор VT1 по сигналам микроконтроллера управляет подсветкой экрана ЖКИ HG1.
Измеряемые сигналы подают гибким кабелем, на котором установлена розетка Х1. Сигналы управления вентилятором, включением блока питания, а также управления цепью ограничения тока зарядки сглаживающих конденсаторов выпрямителя выведены на штыревую колодку Х2.
Напряжение питания 5 В подаётся на выводы 5 и 15 микроконтроллера. Так как от вывода 15 питается встроенный АЦП, для исключения помех его работе в цепь этого вывода включён фильтр L1C9. Через конденсатор С7 замыкается импульсная составляющая потребляемого микроконтроллером тока.
АВМ смонтирован на двусторонней печатной плате (рис. 6).
Перед монтажом её нужно "прозвонить" и удалить обнаруженные непротравленные перемычки между проводниками. Для микроконтроллера на плате рекомендуется установить панель, так как при ошибках программирования микроконтроллеров семейства AVR нередки случаи нарушения их связи с обычным последовательным программатором. Её можно воcстановить только с помощью так называемого высоковольтного программатора, в панель которого придётся перенести микроконтроллер, извлечённый из панели на плате АВМ.
Поскольку в домашних условиях металлизировать отверстия платы трудно, выводы деталей необходимо пропаивать с обеих её сторон. Панель для микроконтроллера при этом должна быть цанговой, иначе пропаять её выводы со стороны установки деталей не удастся.
В отверстия, показанные на рис. 6 залитыми, при отсутствии металлизации необходимо вставить и пропаять с двух сторон короткие отрезки неизолированного провода.
Металлизацию можно выполнить и с помощью пустотелых медных заклёпок (пистонов), вставляя их в отверстия платы и развальцовывая с двух сторон. Наборы таких пистонов продаются, например, под торговыми марками LPKF EasyContac и BG9.S rivets, однако они довольно дороги.
На плате предусмотрены отверстия для её крепления и места для установки кнопок SB1 и SB2, а также ещё одной не показанной на схеме кнопки (она обозначена SB3 и через промежуточное реле может использоваться как кнопка SB1 в [1]) и светодиода HL1 [1]. Контакты кнопки SB3 и выводы светодиода соединены с разъёмом Х5, который также на схеме не показан.
При необходимости габариты платы можно уменьшить до 65x42 мм, обрезав её по имеющейся на рис. 6 штриховой линии. В этом случае кнопки SB1 и SB2 располагают в любом удобном месте и соединяют с разъёмом Х4 жгутом проводов или отрезком плоского кабеля.
Резисторы делителей напряжения (R1—R3, R10) — С2-23 с допустимым отклонением от номинала ±1 %. Если резистор R2 номиналом 191 кОм найти не удастся, его можно составить из двух номиналами 180 и 10кОм. Остальные резисторы — С1-4-0,125. Терморезистор RK1 с отрицательным температурным коэффициентом сопротивления — В57703. Резисторная сборка 5A332J может быть заменена отечественной НР-1-4-4М из резисторов номиналом 3,3 кОм. Конденсаторы — керамические К10-17 или импортные. Дроссель L1 -ЕС-24на 100 мкГн.
В АВМ применены разъёмы BLD-6 (Х1), PLD-6 (X2), PLD-10 (ХЗ), PLS-4 (X4, Х5). Кнопки — любые тактовые с подходящей длиной толкателя, например TS-A6PS.
Индикатор — МТ-10Т11 [2] с любыми буквенными и цифровыми индексами, кроме 3VO. Индикаторы с таким индексом рассчитаны на напряжение питания 3 В и при 5 В работать не будут. Подойдёт также индикатор МТ-10Т12, однако он вдвое большего размера.
Полевой транзистор 2N7000 можно заменить любым другим п-канальным с изолированным затвором и пороговым напряжением не более 3 В. Можно использовать даже биполярный транзистор структуры n-p-п, однако это приведёт к большей рассеиваемой на нём мощности и меньшей яркости подсветки.
Микроконтроллер ATtiny26-16PU можно попробовать заменить на
ATtiny26L-PU, но его работа гарантирована при частоте кварцевого резонатора не более 8 МГц. Программа микроконтроллера разработана в среде Atmel AVR Studio и написана на языке ассемблера. Загрузить её в память микроконтроллера можно с помощью фирменного программатора AVR ISP mk II непосредственно из среды разработки либо воспользоваться программой AVReAl [3] и адаптером Altera ByteBlaster [4]. Расположение выводов разъёма ХЗ соответствует именно этому адаптеру. Не исключено использование и других программаторов для микроконтроллеров семейства AVR. Коды из файла avm.hex заносят во FLASH-память микроконтроллера, а из файла avm.eep — в его EEPROM.
Файл печатной платы в формате Sprint Layout 5.0 и программа микроконтроллера скачать
Конфигурация микроконтроллера должна соответствовать рис. 7.
Алгоритм работы программы состоит в циклическом опросе пяти каналов измерения с частотой 50 Гц. При измерениях в каналах напряжения и тока образцовое напряжение АЦП равно 2,56 В и подаётся от встроенного в микроконтроллер источника. При измерении температуры образцовым служит напряжение питания микроконтроллера (5 В).
Результаты работы АЦП складываются в кольцевой буфер, в котором умещаются 25 отсчётов, каждый из которых занимает два байта (АЦП микроконтроллера — десятиразрядный). Фактически для каждого канала хранится история из пяти последних отсчётов. Для уменьшения флюктуации показаний в каждом канале вычисляется среднее пяти последних отсчётов [5]. После обработки значения тока и напряжения представляются целыми числами, лежащими в интервале 0—255, причём цена младшего разряда напряжения — 0,1 В, а тока — 0,01 А. Следовательно, пределы измерения напряжения и тока равны соответственно 25,5 В и 2,55 А.
Значение выпрямленного напряжения на входе блока питания [1] на индикаторе не отображается, но используется для вычисления рассеиваемой этим блоком мощности.
Поправочные коэффициенты для каждого канала (за исключением канала температуры), учитывающие разброс параметров АЦП и резисторов делителей напряжения, хранятся в EEPROM микроконтроллера. По умолчанию все они равны 1, но в результате выполнения процедуры самокалибровки могут принимать значения от 0 до 2-1/64 с шагом 1/64.
Температура может принимать значение от -55 до +125 °С и отображается на ЖКИ в целых градусах Цельсия. Для её вычисления используется табличное преобразование результата работы АЦП. Если измеренное значение температуры больше 45 °С, формируется команда на включение вентилятора, если меньше 40 °С, вентилятор выключается. В случае превышения температуры 90°С происходит аварийное отключение блока питания, а на ЖКИ выводится надпись "Overheat".
Чтобы запустить режим самокалибровки, необходимо кнопкой SB2 подать сигнал выключения блока питания (АВМ при этом остаётся включённым), затем нажать на кнопку SB1 и, удерживая её, ещё раз нажать на SB2. После этого на разъём Х1 АВМ подают следующие образцовые напряжения: на вход Uвыпр (конт. 6) — 40 В, на вход Uвых (конт. 1) — 20 В, на входы Iн (конт. 2) и Imax (конт. 5) — 0,5 В, что соответствует падению напряжения на датчике тока (R13 в [1]) при Iн=2 А. На вход контроля температуры (в точку соединения резисторов R7, R8 и терморезистора RK1) подают напряжение 4 В.
При калибровке каналы обозначаются на индикаторе буквами в крайнем левом знакоместе: U — выходное напряжение, I — ток нагрузки, L — ток срабатывания защиты, t — температура, r -напряжение выпрямителя. Например, перед калибровкой канала выходного напряжения выводится надпись, показанная на рис. 8.
Выбирают каналы для калибровки поочерёдно нажатиями на кнопку SB1, а с помощью SB2 запускают процесс калибровки выбранного канала. О его завершении и записи результата в EEPROM сообщит надпись "Saved", a ещё через 2 с на индикаторе можно будет увидеть значение соответствующего параметра, вычисленное с использованием подобранного коэффициента. После этого можно нажатием на кнопку SB1 перейти к следующему каналу или повторить калибровку прежнего, нажав на SB2.
Выводя на индикатор значение выходного напряжения, АВМ учитывает падение напряжения на датчике тока, вычитая его из результата измерения. Поэтому по завершении калибровки, пока образцовые напряжения с входов АВМ сняты, на индикатор, работающий в режиме отображения выходного напряжения и тока нагрузки, будут выведены 19,5 В (на 0,5 В меньше образцового напряжения 20 В) и 2 А (соответствует падению напряжения 0,5 В на датчике тока).
К блоку питания [1] АВМ подключают по схеме, изображённой на рис. 9.
Резистор R13, согласно описанию блока, составлен из трёх одноваттных резисторов номиналом 1 Ом, соединённых параллельно, и имеет сопротивление 0,33 Ом. К ним нужно добавить ещё один такой же резистор, уменьшив общее сопротивление до 0,25 Ом. Это упрощает расчёты, производимые микроконтроллером АВМ.
На той же схеме показан служащий источником входного напряжения блока питания выпрямитель на трансформаторе Т1 и диодах VD1—VD4, снабжённый узлом ограничения тока зарядки сглаживающего конденсатора после включения. Для его работы одновременно с сигналом, открывающим транзистор VT1, что приводит к срабатыванию реле К1 и подаче сетевого напряжения на сетевую обмотку трансформатора, микроконтроллер подаёт и сигнал, открывающий фототранзистор оптрона U1. В результате транзистор VT2 после включения блока остаётся закрытым, а ток зарядки сглаживающих конденсаторов выпрямителя течёт через ограничивающий его резистор R5.
Программа микроконтроллера АВМ следит за скоростью изменения напряжения на этих конденсаторах. Как только она в достаточной мере уменьшится (это означает, что конденсаторы зарядились почти полностью), сигнал, открывающий фототранзистор оптрона U1, будет снят. В результате напряжение затвор—исток транзистора VT2 увеличится. Его канал сток—исток откроется. Поскольку сопротивление открытого канала всего 0,018 Ом, сколько-нибудь заметный ток через резистор R5 более не течёт и на дальнейшую работу устройства не влияет.
Трансформатор Т1 — ТТП-60 2x12 В. Диоды Шотки 90SQ045, из которых собран мостовой выпрямитель, могут быть заменены на 1N5822.
Сам АВМ питается от отдельного источника U2 напряжением 5 В, основное требование к которому — минимум пульсаций. Микроконтроллер потребляет не более 20 мА, подсветка индикатора — около 100 мА, ещё 100 мА необходимо для реле К1 (TRIL-5VDC-SD-2CM).
ЛИТЕРАТУРА
1. Высочанский П. Простой лабораторный блок питания 1...20В с регулируемой токовой защитой. — Радио, 2006, № 9, с. 37.
2. Жидкокристаллический модуль МТ-10Т11. -- <http://www.melt.com.ru/ docs/MT-10T11.pdf>.
3. AVReAl — ISP программатор AVR. -<http://real.kiev.ua/avreal/>.
4. Адаптеры, с которыми может работать AVReAl. — <http://real.kiev.ua/old/avreal/ru/ adapters. htmIX
5. AVR222: 8-point Moving Average Filter. - <http://www.atmel.com/lmages/ doc0940.pdf>.
Or редакции. Файл печатной платы АВМ в формате Sprint Layout 5.0 и программа его микроконтроллера имеются по адресу ftp://ftp.radio.ru/pub/2014/02/ avm.zip на нашем FTP-сервере.
Радио№2.2014